ISSN : 1738-6764
Task scheduling is an integrated component of computing with the emergence of grid computing. In this paper, we address two different task scheduling models, which are static Round-Robin (RR) and dynamic Fastest Site First (FSF) task scheduling method, using extended timed marked graphs, which is a special case of Stochastic Petri Nets (SPN). Stochastic reward nets (SRN) is an extension of SPN and provides compact modeling facilities for system analysis. We build hierarchical SRN models to compare two task scheduling methods. The upper level model simulates task scheduling and the lower level model implements task serving process for different sites with multiple servers. We compare these two models and analyze their performances by giving reward measures in SRN.
