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구조방정식 모형에서

정규성 가정 위배 시 ML의 대안 탐색*

 신  은  경          김  수  영†

이화여자대학교 심리학과

구조방정식 모형을 추정할 때 일반적으로 사용되는 최대우도 방법은 자료가 정규분포를 따른다는 가정에 

기반하고 있다. 그러나 심리학을 포함한 사회과학 분야에서 정규성 가정이 위배되는 사례가 빈번히 보고되

고 있으며, 이러한 상황은 추정 결과에 편향을 초래하여 통계적 추론의 타당성을 저하시킨다. 이에 정규성 

가정이 위배된 상황에서도 신뢰할 수 있는 결과를 주는 여러 대안적인 방법들이 탐색되어 왔으나, 방법별 

수행도가 연구마다 일관적이지 않아 적절한 추정 방법을 선택하기 위한 기준이 명확하지 않은 상황이다. 

따라서 본 연구는 정규성 가정 위배 시 발생하는 문제에 대응할 수 있는 대안적인 방법을 정리하고, 방법

별 수행도를 비교․제시하기 위해 지난 30여 년간의 관련 연구를 통합하여 연구자들이 실질적으로 참고할 

수 있는 지침을 제안하고자 한다. 먼저, 최대우도 방법에서 정규성 가정의 의미와 가정 위배가 추정 결과

에 미치는 영향을 설명한다. 다음으로, 정규성 가정이 위배된 상황에서 활용 가능한 다양한 방법들을 소개

하고, 이들 방법이 비정규성에 대응하는 원리를 논의한다. 나아가, 기존 연구들을 체계적으로 탐색한 후 연

구 결과를 조건별로 분류하고, 이를 표와 그림으로 시각화하여 각 방법의 수행도를 비교하고 논의한다. 마

지막으로, 위에서 논의된 내용을 종합한 가이드라인을 제공하면서 본 연구의 의의와 한계에 관해 논한다.
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구조방정식 모형은 관찰되는 지표변수로부

터 잠재변수를 측정하고 측정된 잠재변수 

간의 관계를 추정하는 분석 방법으로(Bollen, 

1989; Jöreskog, 1969), 잠재적인 특성 변수를 

주로 사용하는 교육학 및 심리학 등의 사회

과학 분야에서 활발하게 사용되고 있다(Kline, 

2016). 이러한 구조방정식 모형을 추정하고자 

할 때 일반적으로 최대우도(maximum likelihood, 

ML) 추정을 이용한다. 최대우도 방법은 모형

과 자료가 주어졌을 때 자료의 발생확률을 최

대화시키는 모수, 즉 연구자의 자료를 가장 

가능성 있게 만드는 모수를 추정하는 것을 목

적으로 한다(김수영, 2016). 최대우도 방법을 

이용하면 추정 결과인 모수 추정치는 점근적

으로 불편향적이고 일관적이며 효율적인 특성

을 갖게 된다(Bollen, 1989; Jöreskog, 1969). 이

러한 특성은 최대우도 방법의 주요 가정 중 

하나인 정규성 가정이 전제되어야 확보될 수 

있는데(Browne, 1984; Browne & Shapiro, 1988), 

사회과학 분야에서 사용되는 변수들은 많은 

경우에 정규분포를 따르지 않기에 정규성 가

정을 완전히 만족하기 어렵다(Micceri, 1989; 

Wang & Wang, 2020). 정규성 가정이 위배된 

조건에서 최대우도 방법을 이용할 경우 추정 

결과에 편향 등의 문제가 발생하고, 위배 정

도가 심각해질수록 편향의 정도가 커지는 것

으로 알려져 있다(Curran et al., 1996). 이러한 

문제에 대응하기 위하여 기존의 최대우도 

추정에 수정을 가하는 방법이나 부트스트랩

(bootstrap)과 같은 대안적인 방법들이 제안되었

다(Bollen & Stine, 1992; Efron, 1979; Satorra & 

Bentler, 1994). 이와 같은 여러 방법들이 제안

되었음에도 불구하고, 각 방법의 강건한 수행 

정도는 가정의 위배 정도와 시뮬레이션의 진

행 조건에 따라 다르게 나타났다(Curran et al., 

1996; Yu, 2002). 이처럼 연구에 따라 일관적이

지 않은 수행도(performance)를 보이기 때문에 

연구자들이 일부의 단편적인 결과만을 참고하

는 것만으로는 적절한 추정 방법이 무엇인지 

판단하기 어렵다. 이에 본 연구는 정규성 가

정이 위배된 상황에서 사용할 수 있는 대안적

인 추정 방법들을 논의하여, 연구자의 주어진 

상황에 따라 적절한 추정 방법을 선택할 수 

있도록 정보를 제공하고자 한다. 이를 위하여 

비정규성 조건에서 다양한 추정 방법의 수행

도를 살펴본 해외 연구들을 탐색한 후, 가정

의 위배 정도에 따른 수행 결과를 체계적으로 

정리하여 살펴본다.

모형의 추정은 연구자가 설정한 모형을 분

석하는 과정의 핵심적인 단계 중 하나이다. 

이 단계에서는 연구자가 설정한 모형의 모수

를 추정하는데, 관찰된 공분산 행렬과 추정된 

공분산 행렬 간의 차이를 최소화하는 모수를 

찾는 것이 일반적이다(Wang & Wang, 2020). 

이와 같은 추정의 과정에서 적절한 모수를 찾

기 위해서는 어떤 방법을 선택하느냐가 매우 

중요한데, 이는 추정 방법의 선택에 따라 모

수 및 표준오차 추정치와 전체적인 모형 적합

도 지수 결과가 달라지기 때문이다(Lei & Wu, 

2012). 일반적으로 구조방정식의 영역에서는 

최대우도 방법이 가장 흔하게 사용되며(Hoyle, 

2000; Wang & Wang, 2020), 모수를 안정적으

로 추정하고 적합도를 평가하기 위한 검정통

계량을 제공한다는 점에서 오랜 기간 사용되

어 왔다(Bollen, 1989). 최대우도 방법을 사용

하기에 앞서, 안정적인 결과 산출을 위해 연

구자는 추정 방법이 전제하고 있는 가정을 

만족하는지 확인해야 한다(Finney & DiStefano, 

2013). 최대우도 방법의 핵심적인 가정 중 하

나는 연속형 내생변수의 분포가 정규분포를 
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따른다는 것으로, 정규성 가정이 위배된 경우

에는 추정 결과에서 편향의 문제를 보이는 것

으로 알려져 있다(Bollen, 1989). 정규성 가정의 

위배 정도가 커질수록 모형 적합도 검정을 위

한 검정통계량과 표준오차 추정치가 편향

되는 결과를 보이며(Chou et al., 1991), 이러한 

편향은 실수로 영가설을 기각하는 1종오류

의 증가 문제로 이어지게 된다(Curran et al., 

1996).

정규성 가정 위배 시 발생하는 문제에 대응

하기 위해 여러 통계적인 접근이 제안되었다. 

먼저, 정규성 가정이 기반된 방법에 수정을 

가하는 접근으로 최대우도 추정을 수정하는 

방법에는 Satorra와 Bentler(1994)가 제안한 MLM 

(ML with a mean adjustment) 및 MLMV(ML with 

a mean- and variance-adjustment)와 MLR(ML with 

robust standard errors) 등이 있다(Muthén & 

Muthén, 1998–2017; Wang & Wang, 2020). 특

히, MLM과 MLR은 과대추정된 검정통계량

이 분포에 잘 근사하도록 평균 조정을 가

하고 과소추정된 표준오차에 대한 교정을 제

시하는 방법이라는 공통점이 있으며(Savalei, 

2010), 정규성 가정이 위배된 조건에서 수행

이 뛰어나다고 알려져 있다(Chou et al, 1991; 

Curran et al., 1996; Grønneberg & Foldnes, 2019; 

Hu et al., 1992; Lai, 2018). 이에 본 연구는 두 

가지 방법을 수정된 최대우도(corrected ML) 방

법으로 지칭하여 함께 다룬다.

다음으로 분포에 대한 가정을 하지 않는 부

트스트랩이 있다. 부트스트랩은 연구자의 표

본을 거짓 모집단(pseudo population)으로 가정

하고, 이를 기반으로 생성한 경험적 표집분포

를 추론에 이용하는 재표집(resampling) 방법이

다(Hancock & Liu, 2012). 연구자의 표본이 모

집단과 같은 형태의 점수 분포를 가져야 한다

는 가정 외에 다른 가정이 없으므로(김수영, 

2016; Kline, 2016), 비정규성 조건에서 사용이 

용이하다는 장점이 있다(Nevitt & Hancock, 

2001). 다만, 부트스트랩은 표집 방법이라는 

특성상 추정 방법의 고유한 정의에 부합하기

보다는 가설 검정의 대안적인 접근법으로 간

주될 수 있다. 그러나 부트스트랩이 Mplus 

등의 통계 소프트웨어에서 별도의 추정 방법

(estimator)으로 구현되어 있으며, 특히 비정규

성 조건 하에서 다른 방법과 구별되는 통계적 

추론 결과를 산출한다는 점을 고려하여, 본 

연구는 이를 추정 방법으로 다루어 논의한다.

마지막으로 최대우도 방법과 같은 빈도주의

(frequentist) 접근의 한계에 대한 대안으로서 

베이지안(Bayesian) 방법이 제안되었다(Levy & 

Mislevy, 2016). 베이지안은 빈도주의 접근과 

달리 모수를 변수로 가정하고 모수의 분포를 

추정하는 접근법으로(이지윤, 김수영, 2021), 

이 분포는 자료의 특성을 반영하는 우도함수

(likelihood function)와 모수에 대한 연구자의 믿

음을 나타내는 사전분포(prior distribution)의 결

합을 통해 형성된다(Gelman et al, 2013). 이때 

자료에 대해서 특정한 분포를 따라야 한다는 

가정을 요구하지 않으므로, 다양한 형태의 자

료를 이용할 수 있다는 유연성이 주요 특징으

로 강조된다(Kaplan, 2023). 특히, 자료의 비정

규성은 추정 과정에 큰 영향을 미치지 않는 

것으로 알려져 있으며(Depaoli, 2021), 이로 인

해 정규성 가정이 충족되지 않는 상황에서

의 적용 가능성이 탐색되어 왔다(Lee & Song, 

2004; Lüdtke et al., 2021).

대안적인 추정 방법이 제안됨에 따라 해당 

방법들의 수행도를 살펴본 연구가 지난 30여 

년간 활발하게 진행되었다(Chou et al., 1991; 

Curran et al., 1996; Falk, 2018; Maydeu-Olivares, 
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2017; Nevitt & Hancock, 2001). 예를 들어, 

Curran 등(1996)은 정규성 가정이 위배된 조

건에서 최대우도 방법과 대안적인 방법의 수

행도를 살펴보고자 하였으며, 강건한 방법으

로는 분포적 가정을 완화하여 구체적인 분

포 형태를 요구하지 않는 ADF(asymptotically 

distribution-free; Browne, 1984)와 MLM의 수행

도를 비교하는 연구를 진행하였다. Nevitt과 

Hancock(2001)은 Curran 등(1996)과 동일하게 연

구 조건을 설정하였지만, 추정 방법의 종류를 

다르게 하여 MLM과 부트스트랩 방법 간의 수

행 비교에 초점을 두었다. 이러한 선행 연구

들을 통해 대안적인 방법들의 전반적인 수행 

양상을 파악할 수 있지만, 각각의 연구들이 

진행한 시뮬레이션 결과는 일관적이지 않았다. 

예를 들어, MLM의 수행도를 살펴본 일부 연

구들은 다소 상반된 결과를 보였는데, 정규성 

가정을 심각하게 위배한 조건일 때는 1종오류

를 제대로 통제하지 못한다는 연구 결과(Yu, 

2002)와 표본크기만 충분하다면 위배 조건과 

상관없이 1종오류를 제대로 통제함을 보인 연

구 결과(Nevitt & Hancock, 2001)도 있었다. 또

한, 비정규성 조건 하에서 부트스트랩의 수행

도는 여러 조건에 따라 그 결과가 다르게 나

타났는데, Grønneberg와 Foldnes(2019)는 부트스

트랩의 수행이 충분하지 않은 표본크기 조건

에서도 우수하다고 보고한 반면, Ferraz 등

(2022)은 모형의 크기가 증가된 조건, 즉 변수

의 수가 많은 조건에서는 부트스트랩이 보수

적으로 기능함을 보였다. 이는 정규성 가정이 

위배된 조건에서 수행 결과를 살펴보고자 할 

때, 해당 시뮬레이션이 진행된 조건 또한 고

려해야 함을 의미한다. 다시 말해, 선행 연구

들은 자료 생성의 조건(예, 비정규성의 정도, 

표본크기 등)이나 추정 방법의 종류를 서로 

다르게 설정하였다는 점에서 이들이 내린 결

론으로부터 일반적인 결과를 이끌어 내는 것

이 어렵다는 한계가 있다. 이로 인해 연구자

는 자신의 연구 조건과 자료 특성에 맞는 적

절한 추정 방법을 선택하는 데 어려움을 겪을 

수 있으므로, 정규성 가정 위배 조건에서 수

행 결과를 직관적으로 파악하기 위한 체계적

인 정리가 필요하다.

본 연구는 구조방정식 모형에서 정규성 가

정이 위배되었을 경우에 사용할 수 있는 대안

적인 추정 방법을 소개하고, 연구자들이 적절

한 방법을 선택하는 데 참고할 수 있는 가이

드라인을 제공한다. 정규성 가정이 위배된 조

건에서 사용할 수 있는 추정 방법들이 제안됨

에 따라 해당 방법들의 수행도에 대한 논의가 

오랜 기간 진행되었음에도 불구하고, 각 방법

들의 수행 결과가 일관되지 않고 시뮬레이션 

조건도 서로 다르게 설정되어 어떤 추정 방법

을 이용해야 할지 선택하는 것이 쉽지 않다. 

이에 본 연구는 본격적인 논의에 앞서, 구조

방정식 모형에서 일반적으로 사용되는 최대우

도 방법과 정규성 가정을 간단히 소개하고, 

정규성 가정이 만족되지 않을 때 나타나는 문

제와 이에 대응 가능한 대안적 추정 방법들을 

논의한다. 이어서 지난 수십 년간의 연구들을 

탐색한 후 해당 연구들이 공통적으로 설정한 

기준, 즉 정규성 가정 위배 정도, 표본크기 등

의 기준에 따라 방법 간의 수행 결과를 분류

한다. 분류한 결과를 시각화하여 수정된 최대

우도, 부트스트랩, 베이지안 방법들의 수행도

를 비교한다. 각 방법의 수행도는 먼저 1종오

류 및 검정력 측면에서 비교하고, 상대편향

(relative bias)을 확인하여 여러 조건에서 추정 

방법의 수행에 대해 통합적으로 논의한다. 이

후, 각 측면의 수행도 결과에 대한 논의를 종
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합하여 추정 방법의 선택을 위한 가이드라인

을 제공함으로써 연구자들의 적절한 의사결

정을 돕는다.

최대우도 방법의 정규성 가정

구조방정식 모형을 추정하고자 할 때, 일반

적으로 이용되는 최대우도 방법에 대해 간략

하게 서술하고 최대우도 방법의 사용에 있어 

전제가 되는 정규성 가정에 대해 논의한다. 

이어서 이러한 정규성 가정이 위배된 상황에

서 최대우도 방법을 이용할 경우, 모형 및 모

수의 검정 단계에서 발생할 수 있는 문제점을 

다룬다. 이때 정규성 가정이 위배된 경우는 

정규성 가정을 만족하지 못하는 연속형 변수

이거나 이분형 자료(binary data)와 같이 본질

적으로 정규성 가정이 위배된 범주형 자료

(categorical data)인 경우로 나눌 수 있는데(Yu, 

2002), 본 연구는 내생변수가 연속형인 구조방

정식 모형을 중심으로 추정 방법에 대한 논의

를 진행한다.

최대우도 방법

최대우도 방법은 구조방정식 모형의 추정에 

가장 많이 사용되는 방법으로(Wang & Wang, 

2020), 모형이 주어진 상태에서 자료의 발생확

률을 최대화시키는 모수를 추정하는 것을 목

적으로 한다. 이때 모수 추정의 핵심은 연구

자의 자료인 표본 공분산 행렬과 설정한 모형

을 통해 추정된 공분산 행렬의 차이를 최소화

하는 것에 있다(Bollen, 1989). 합치함수(fitting 

function)를 이용하여 표본 공분산 행렬과 추정

된 공분산 행렬의 차이를 수식화할 수 있는데, 

최대우도 방법에서 이용하는 합치함수는 다음

과 같다(Bollen, 1989; Jöreskog, 1969).

  log
 log        (1)

위 식에서  은 연구자가 설정한 모형

에서 추정된 공분산 행렬이고, 는 표본 공분

산 행렬이며, 는 관찰변수의 개수이다. 이를 

통해 변수 개로 구성된 모형에서의 공분산 

행렬  과 자료에서의 공분산 행렬 간의 

차이를 확인할 수 있으며, 행렬 간의 차이가 

작다는 것은 연구자가 설정한 모형이 자료와 

잘 부합함을 의미하게 된다. 또한, 합치함수가 

최소화된 모수 추정치는 모수에 대한 일관

적인 특성을 갖게 되고(Bollen, 1989; Browne, 

1984), 결과적으로 최대우도 방법을 통해 산출

되는 모수 추정치는 일정 가정을 만족한다면 

점근적으로 효율적이고 불편향적인 특성을 갖

는다(Bollen, 1989).

최대우도 방법의 장점은 모수를 안정적으로 

추정할 뿐 아니라 이를 이용하여 모형 적합도

를 평가하기 위한 검정통계량을 산출할 수 있

다는 것에 있다(Bollen, 1989). 모형 적합도 검

정을 위해서 우도비(Likelihood-Ratio, LR) 검

정통계량을 이용하는데, 이는 아래와 같이 정

의된다.

                (2)

통계 프로그램마다 제공하는 검정통계량

은 다를 수 있으나 일반적으로 검정통계량

은 식 2 혹은  이 사용된다. 최대

우도 방법은 모형이 자료에 완벽하게 부합한

다는 영가설을 검정하는 검정을 이용하며, 
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검정통계량의 표집분포가 분포에 근사한다

는 점근 이론을 바탕으로 한다. 이때 점근 이

론이 성립하기 위해서는 관찰변수의 왜도와 

첨도가 0에 가까우면서 표본크기가 충분히 크

다는 가정이 만족되어야 한다(Bollen, 1989). 

정규성 가정 

최대우도 방법은 변수가 다변량 정규분포

를 따른다는 가정하에서 추정의 안정성이 확

보되므로 정규분포 기반 방법이라고도 불린다

(Yuan & Gomer, 2021). 이때 다변량 정규성 가

정이란 이용하고자 하는 각 변수의 단변량 분

포가 정규분포를 따르며, 임의의 두 변수 간 

결합분포가 이변량 정규분포를 따른다는 것을 

의미한다(Kline, 2016). 이러한 다변량 정규성은 

필요조건 중 하나인 각 변수의 단변량 정규성

을 통해 어느 정도 확인할 수 있으며, 일반

적으로 왜도 및 첨도의 절대값 크기로 가정

이 만족되었는지 판단한다(Curran et al., 1996; 

Kline, 2016). 단변량 분포의 왜도 및 첨도 기

준에 대해서 Curran 등(1996)은 절대값이 각각 

2와 7을 넘으면 문제가 발생한다고 하였으며, 

Kline(2016)은 절대값이 각각 3과 10을 넘어가

는 경우 심각한 문제가 발생한다고 보았다. 

이러한 논의에서 볼 수 있듯이, 정규성 가정

의 위배 정도에 대한 합의된 기준이 존재하지 

않으므로, 연구자들은 자료의 특성과 연구 상

황에 적합한 기준을 선택하는 것이 일반적이

다. 본 연구에서도 특정 기준값에 따른 수행

도 변화를 살펴보기 위해 단변량 왜도 및 첨

도의 절대값 크기를 정규성 가정 위배의 기준

으로 설정하였다.

정규성 가정 위배 시의 문제점

정규성 가정이 확보되지 않은 상황에서 최

대우도 방법을 이용한다면 모수 추정치 결과

는 비교적 편향되지 않지만(Chou et al., 1991; 

Finch et al., 1997), 이를 토대로 수행하는 통계

적 검정에서는 두 가지 주요 문제가 발생한다. 

첫째, 모형 적합도 검정에 이용되는 검정통

계량이 과대추정됨에 따라 모형과 자료 간의 

완벽적합 가설을 과도하게 기각하게 된다. 즉, 

정규성 가정이 위배되었을 경우 검정통계

량이 분포를 따르지 않는 문제가 발생하며

(Ferraz et al., 2022), 이는 실수로 영가설을 기

각하는 1종오류를 높이는 통계적인 문제로 이

어지는 것이다(Curran et al., 1996). 뿐만 아니

라, 편향된 검정통계량 문제는 근사적인 적

합도 지수의 결과에도 영향을 미치는데, 특히 

값을 기반으로 추정되는 CFI, RMSEA 등에

도 편향의 문제가 발생하는 것으로 알려져 있

다(Gao et al., 2020; Yu, 2002). 둘째, 개별 모수

의 유의성 검정 시 이용되는 표준오차가 과소

추정되는 문제가 발생한다(Chou et al., 1991). 

모수의 유의성을 검정하기 위한 통계량은 비

표준화 모수 추정치 을 의 표준오차 
으로 나눈 값이다. 일반적으로 표준오차는 기

대 정보행렬의 역함수와 표본크기를 이용하

여 구하는데, 만약 정규성 가정이 위배되면 

이러한 정보행렬에 편향이 발생한다(Yuan & 

Hayashi, 2006). 이로 인해 검정통계량의 계산

에 편향이 생기고, 결과적으로 통계적인 검정

에 영향을 미치게 된다. 즉, 개별모수가 유의

하지 않음에도 유의하다는 결론을 내리는 거

짓유의성(false positive) 문제가 발생할 수 있다. 
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대안적인 추정 방법 소개

정규성 가정 위배 시 대안적으로 사용할 수 

있는 추정 방법은 여러 문헌들에 의해 소개되

었다(Asparouhov & Muthén, 2005, 2010; Beran & 

Srivastava, 1985; Bollen & Stine, 1992; Gelman et 

al., 2013; Satorra & Bentler, 1994; Yuan & 

Bentler, 2000). 그중 본 연구에서는 대표적으로 

이용되는 수정된 최대우도 방법과 부트스트랩 

및 베이지안 추정을 다룬다. 세 개의 대안적 

추정 방법에 대한 간단한 소개와 각 방법이 

정규성 가정 위배에 대응하는 방식에 관해 논

의한다. 특히 앞서 소개한 일반적인 최대우도 

방법과의 차이를 중심으로 각 방법이 모형 및 

모수 검정에 발생하는 문제에 대해 어떻게 접

근하는지 살펴본다.

수정된 최대우도 방법

비정규성 문제를 해결하기 위해 검정통

계량과 표준오차를 재보정하는 수정된 최대

우도 방법이 제안되었다. 일반적으로 가장 많

이 사용되는 수정된 최대우도 방법은 MLM과 

MLR이다(Wang & Wang, 2020). MLM은 Satorra

와 Bentler(1994)가 제안한 방법으로서 평균 

보정된(mean scaled) 검정통계량과 강건한 

표준오차를 제공하며, MLR은 점근적으로 

Yuan-Bentler 검정통계량에 근사하는 검정통계

량과 강건한 표준오차를 제공하는 방법이다

(Asparouhov & Muthén, 2005; Muthén & Muthén, 

1998-2017). 두 방법 모두 분포를 따르도록 

평균 보정된 검정통계량을 제공하고(Yuan 

& Bentler, 2000), 샌드위치 타입의 공분산 행렬

(sandwich-type covariance matrix; Bentler, 1983; 

Browne, 1984)을 이용하여 강건한 표준오차를 

산출한다는 공통점이 있는(Yuan & Hayashi, 

2006) 반면, 검정통계량과 표준오차를 계산하

는 데 있어 다른 종류의 정보행렬을 이용한

다는 차이가 있다(Savalei, 2010).1) 이에 따라 

MLM과 MLR은 점근적으로는 동일한 검정

통계량과 표준오차 결과를 보이지만, 표본크

기가 작을 때는 서로 다른 결과를 산출하는 

것으로 알려져 있다(Maydeu-Olivares, 2017).2) 또

한, 두 추정 방법의 결과를 비교했을 때, MLR

은 점근적으로 비정규성과 모형 설정 오류가 

있는 모형에도 강건하다는 점에서 MLM보다 

더 일반적인 형태로 볼 수 있다(Lai, 2018). 앞

서 다룬 평균 보정뿐 아니라 평균과 분산 모

두 보정(mean-variance adjustment)된 검정통계

량과 강건한 표준오차를 제공하는 MLMV의 

수행 역시 우수하다고 보고된 바 있으나(Ferraz 

et al., 2022), 다양한 조건에서 해당 방법의 수

행도에 대한 연구는 아직 충분하지 않다(Lei & 

Wu, 2012).

먼저, 비정규성 조건하에서 과대추정된 

검정통계량은 다음과 같이 척도 보정계

수(scaling correction factor) 를 이용해서 수정

된다.

1) MLM은 기대 정보행렬을 기본으로 이용하며, 

MLR은 관찰 정보행렬을 기본으로 이용한다

(Maydeu-Olivares, 2017). 

2) 일반적으로 구조방정식 모형 추정 시 정보행렬

의 종류와 상관없이 일관성 있는 표준오차 결과

가 산출된다는 점에서 정보행렬의 구별에 큰 차

이를 두지 않지만(Yuan & Hayashi, 2006), 표본크

기가 충분히 크지 않은 조건에서 비정규성이 탐

지된 경우, 이러한 정보행렬 간의 차이가 모형 

및 모수 검정의 통계적인 결과에 영향을 미치는 

것으로 알려져 있다(Savalei, 2010).
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  




          (3)

위에서 보정계수 는 변수들의 다변량 첨

도 크기를 반영하는 값으로(Hu et al., 1992), 

비정규성으로 인해 가 1보다 큰 값을 갖게 

됨으로써 과대추정된 검정통계량의 문제를 

상쇄시킬 수 있다. 즉, 검정통계량에 보정을 

가함으로써 평균이 점진적으로 분포의 평

균과 같아지며, 보정된 검정통계량으로 모형 

적합도를 판단할 수 있게 된다(Bollen, 1989). 

다음으로, 추정치의 표준오차가 과소추정

되는 문제는 샌드위치 공분산 행렬을 이용함

으로써 어느 정도 해결할 수 있다(Satorra & 

Bentler, 1994; Yuan & Hayashi, 2006). 샌드위치 

공분산 행렬은 정보행렬의 역행렬, 즉 기존의 

공분산 행렬을 가운데에 두고 관찰변수 벡터

의 외적행렬(outer product matrix of the score 

vector)이 양쪽으로 감싸고 있는 형태의 행렬로

(Savalei, 2010), 이 행렬을 기반으로 수정된 표

준오차를 강건한 표준오차 혹은 샌드위치 표

준오차라고 하며(Huber, 1967; White, 1980), 이

는 MLM과 MLR을 이용하여 구할 수 있다

(Maydeu-Olivares, 2017). MLM을 이용한 결과는 

일반적으로 사용되는 샌드위치 공분산 행렬 

기반의 표준오차로 지칭하고, MLR을 이용한 

결과는 Huber-White 표준오차로 지칭하기도 

한다(Huber, 1967; Lai, 2019; White, 1980).

부트스트랩 방법

부트스트랩은 모집단의 분포에 대해 특정 

형태를 가정하는 모수적 접근과 달리, 연구자

의 표본을 가상의 모집단으로 가정하여 경험

적인 표집분포를 형성하고 이를 검정에 이용

하는 재표집 방법이다(Hancock & Liu, 2012). 

가상의 모집단으로 가정된 연구자의 표본으로

부터 무선적으로 복원 추출하여 표집한 새로

운 표본을 부트스트랩 표본으로 명명한다. 이 

과정을 번 반복하여 개의 부트스트랩 표

본을 생성한 후, 각 개의 부트스트랩 표본으

로부터 총 개의 추정치를 구한다. 이때 추정

치는 일반적으로 최대우도 방법으로 산출되며, 

각 부트스트랩 표본의 추정치로 형성된 경험

적인 표집분포를 토대로 모집단의 모수에 대

해 추론하게 된다.

부트스트랩은 추정치의 표집분포를 구할 때 

이론적인 표집분포의 근사 가정에 의존하지 

않고 경험적인 부트스트랩 표집분포를 이용한

다(Nevitt & Hancock, 2001). 이에 어떠한 분

포적 가정을 하지 않고도 비정규성과 같은 

통계적인 문제를 다룰 수 있게 된다(Yung & 

Bentler, 1996). 이때 모형과 모수를 검정하

기 위해 사용되는 부트스트랩으로는 비모수 

부트스트랩(nonparametric bootstrap; Beran & 

Srivastava, 1985; Efron, 1979)과 Bollen-Stine의 

모형 기반 부트스트랩(model-based bootstrap; 

Bollen & Stine, 1992)이 있다. 두 방법은 기본

적으로 동일한 부트스트랩 절차를 따르지만, 

가상의 모집단으로 가정되는 표본을 활용하

는 방식에 차이가 있다(Maydeu-Olivares, 2017). 

비모수 부트스트랩은 표본 그 자체를 이용

하여 추정치의 표집분포를 근사하는 반면, 

Bollen-Stine 부트스트랩은 원래 표본의 분포를 

유지하면서도 모형과 완벽적합이 되도록 변

환하는 과정을 포함한다(Bollen & Stine, 1992; 

Hancock & Liu, 2012). 변환하지 않은 표본을 

이용하는 비모수 부트스트랩의 분포는 비중심 

분포를 따르기 때문에, 모형 적합도 검정에

서 결과가 왜곡되는 문제가 발생한다(Bollen & 
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Stine, 1992). 따라서 Bollen-Stine 부트스트랩은 

완벽적합이 가정된 표본을 통해 모형 적합

도를 검정하게 된다(Beran & Srivastava, 1985; 

Bollen & Stine, 1992). 변환된 표본을 가상의 

모집단으로 가정하고 동일한 부트스트랩 절차

가 진행되어(Falk, 2018), 개의 부트스트랩 표

본을 생성한 후 개의 표본 추정치에 대해서 

부트스트랩 검정통계량()을 계산할 수 

있다. 이에 의 분포가 모형 적합도 검정

을 위한 표집분포가 되고, 부트스트랩 값은 

이 표집분포 상에서 표본에 기반한 검정

통계량()보다 더 극단적일 확률로 정의된

다. 일반적으로 이 값이 0.05보다 작다면 모형 

적합도가 나쁘다는 결론의 통계적 근거로 사

용될 수 있다(Hancock & Liu, 2012).

이처럼 부트스트랩 절차를 이용하여 부트스

트랩 표집분포를 형성하면, 이어서 모수의 통

계적 유의성을 확인할 수 있다. 일반적으로 

연구자의 표본을 통하여 구해진 경험적 분포

의 분위수(quantile)를 이용하여 신뢰구간을 추

정하고, 이 신뢰구간이 검정하고자 하는 값(일

반적으로 0)을 포함하고 있지 않다면 영가설

을 기각한다(Yung & Bentler, 1996). 또는, 해당 

분포의 표준편차인 부트스트랩 표준오차를 추

정하여 모수의 유의성에 대한 추론(예를 들어, 

검정)을 진행할 수도 있다(Hancock & Liu, 

2012). 

베이지안 방법

베이지안 접근과 빈도주의 접근은 통계적 

추론에 대해 근본적으로 다른 관점을 보인다. 

점근적 표집이론을 중점으로 추론을 진행하는 

빈도주의와 달리 베이지안은 베이즈 정리를 

이용하여 연구자의 자료를 모수에 대한 사

전정보와 결합하여 추론을 진행한다(Depaoli, 

2021). 즉, 베이즈 정리를 통해 주어진 모수

에 대한 연구자의 지식을 반영한 사전분포

를 설정하고, 자료가 가지고 있는 모수에 대

한 정보를 우도함수로 나타내어, 사전분포

와 우도함수의 결합분포인 사후분포(posterior 

distribution)를 추정한다. 그런데 이러한 사후분

포에 대한 직접적인 추론은 분석적인 어려움

으로 인해 가능하지 않다. 따라서 무작위 추

출을 반복하는 표집 방법인 마코프 체인 몬테

카를로(Markov Chain Monte Carlo, MCMC) 알고

리즘을 이용하여 추론을 진행해야 한다(Kaplan 

& Depaoli, 2012). MCMC 방법은 우도함수를 명

확히 정의하기 어려운 경우에도 사후분포를 

효과적으로 추정할 수 있다는 장점이 있다

(Yuan & Gomer, 2021). 특히, MCMC 방법 중에

서도 대표적으로 이용되는 깁스 샘플러(Gibbs 

sampler; Geman & Geman, 1984)는 자료의 특

성을 반영하는 우도함수의 형태나 표본크기 

조건에 크게 제약받지 않고 사용될 수 있다

(Scheines et al., 1999)는 점에서 분석의 유연성

을 보여준다. 즉, MCMC 방법은 자료에 대해 

특정 분포 형태의 가정을 요구하지 않고 점근 

이론에 의존하지 않으며, 비정규성 자료를 다

루는 데에도 유용할 수 있다. 

사후분포를 이용하여 추론하는 베이지안은 

빈도주의 접근과 비교하여 모수 추정과 모형 

적합도 검정 방식에 차이가 있다(Muthén & 

Asparouhov, 2012). 먼저, 베이지안과 빈도주의 

접근은 모수를 취급하는 관점의 차이로 인해 

모수 추정 방법이 다르다. 모수를 상수로 가

정함에 따라 모수에 대해 점 추정 혹은 구간 

추정을 하는 최대우도 방법과 달리, 베이지안 

추정은 모수를 확률변수로 가정하고 이에 확
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률분포를 할당하여 모수의 불확실성을 설명한

다(van de Schoot et al., 2021). 즉, 추정의 결과

인 사후분포를 그 평균이나 중앙값 등을 통해 

요약하거나, 신용구간(credibility interval)을 구

하여 불확실성을 확인할 수 있다(Muthén & 

Asparouhov, 2012). 나아가, 이러한 요약된 통계

치의 편향 정도를 평가함으로써, 빈도주의 접

근처럼 모수 추정의 정확도를 검증할 수 있다

(Lüdtke et al., 2021; Xu, 2019).

다음으로, 모형 적합도 평가를 위해서는 사

후 예측 확인 절차(posterior predictive checking, 

PPC)가 활용된다(Asparouhov & Muthén, 2010; 

Gelman et al., 1996). 이는 모형이 관찰된 자료

와 얼마나 부합하는지 평가하는 과정이며, 모

형을 기반으로 생성된 자료와 관찰된 자료가 

유사한지 확인하는 것이다(Gelman et al., 2013). 

이때, 사후 예측 값(posterior predictive -value, 

 ; Gelman et al., 1996)을 이용하여 실제 

자료에 대한 검정통계량이 사후 예측 분포

(posterior predictive distribution)에서 극단적인 값

인지 평가함으로써, 모형이 실제 자료를 잘 

설명하는지 판단할 수 있다. 사후 예측 분포

는 모형을 기반으로 생성된 사후 예측 자료

(posterior predictive data)의 통계량의 분포로, 모

형 적합도 검정을 위한 표집분포로 사용된다

(Levy & Mislevy, 2016). 값은 사후 예측 분

포하에서 반복적으로 생성된 자료에 기반한 

통계량이 관찰된 자료 기반의 통계량보다 더 

클 확률로 정의되며, 모형 기반으로 생성된 

자료가 관찰된 자료와 유사할 때 모형이 적합

하다고 평가할 수 있다(Gelman et al., 2013).3) 

3) 모형과 자료가 완벽하게 부합하는 경우 값은 

0.5일 것이고, 0.5에서 떨어진 값일수록 모형과 

자료가 적합하지 않다는 것을 의미하게 된다.

대안적인 추정 방법의 수행도 비교

지금까지 비정규성을 가정한 다양한 시뮬레

이션 연구를 통하여 대안적인 추정 방법들의 

수행도가 평가되어 왔다. 여기서 주목할 점은 

선행 연구들에서 각 방법의 수행도가 일관되

지 않은 결과를 보였다는 것이다. 예를 들어, 

MLM의 수행도와 관련하여 Nevitt과 Hancock 

(2001)은 충분한 표본크기가 확보된 경우에는 

정규성 가정 위배의 정도와 관계없이 1종오류

를 적절히 통제할 수 있다고 보고한 반면, 

Maydeu-Olivares(2017) 및 Yu(2002)는 가정 위배 

정도와 상관없이 1종오류 통제에 어려움이 있

음을 지적하였다. 상반된 결과가 도출된 연구

들을 자세히 보면, 자료 생성 조건(예, 자료 

분포의 형태, 비정규성 정도, 표본크기 등)이 

연구마다 상당히 달랐다는 것을 확인할 수 있

었다. 이는 추정의 수행도를 평가한 연구 결

과들을 비교하기 위해서는 다양한 시뮬레이션 

조건을 충분히 반영한 포괄적인 논의가 요구

된다는 것을 의미한다. 따라서 본 연구는 지

난 수십 년간의 연구를 검토하여 공통된 기준

을 설정하고, 그에 따라 각 추정 방법의 수행 

결과를 체계적으로 분류한다. 이를 위해 정규

성 가정 위배와 관련된 방법론 연구를 선별하

고, 이들 연구를 바탕으로 각 방법이 특정 조

건에서 보이는 수행 양상을 분석한다. 나아가, 

연구의 주요 목적 중 하나인 조건별로 신뢰할 

수 있는 결과를 도출하는 방법을 제안하기 위

해, 추정 방법의 종류와 비정규성의 정도 등

의 기준에 따라 연구 결과를 분류하고 이를 

토대로 종합적인 결론을 제시한다. 분석에 이

용된 연구의 시뮬레이션 설계는 요약되어 표 

1에 제공되었으며, 각 연구에서 사용한 추정 

방법의 종류는 본 논문의 주요 논의 범위에 
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저자(연도) 추정 방법
모형 비정규성 수준

표본크기
반복

횟수

데이터

생성f p 왜도 첨도

Curran 등(1996)
ML,

MLM
3 9

0

2

3

0

7

21

100

200 

500

1,000

200
EQS

(VM)

Ferraz 등(2022) ML, BS

1

2

3

10

20

30

0

2

2

0

3

7

100

200

500

1,000

1,000

R

(covism

package)

Grønneberg & Foldnes(2019)
MLM,

BS
3 11

0

1

2

0

7

7

100 

300 

900

2,000
R

(VM)

Lai(2019)

ML,

MLM,

MLR,

BS

6 18

-0.5 0 0.5

-1 0.5 1

-1.5 1.5 2

2~3

3~5

6~10

250

400

700  

1,000

3,000
R

(IG)

Liang & Yang(2016)
MLM,

B

2

2

8

16

0

1.25

2

0

3.75

7

100

200 

400

2,000
SAS

(VM)

Maydeu-Olivares(2017)

ML,

MLM,

MLR

2

2

16

32

0

0

-2

0

2

3.18

200 

500 

1,000

1,000 Mplus

Nevitt & Hancock(2001)

ML,

MLM,

BS

3 9

0

2

3

0

7

21

100

200

500

1,000

200
GAUSS

(VM)

Nevitt & Hancock(2004)
ML,

MLM
7 21

0

0

3

0

6

21

129 

258

645

1,290

2,000
GAUSS

(VM)

Savalei(2010)

ML,

MLM,

MLR

2

4

16

16

0

2

0

7

100

200 

300

400

500

1,000
EQS

(VM)

Xu(2019)
MLR,

B
3 9

0

1

2

0

3

7

200 

500 

1,000

200
R

(VM)

Yu(2002)
ML,

MLM
3 15

0

2

3

0

7

21

100 

250

500 

1,000

500
SAS

(VM)

주. f는 요인(factor)의 개수, p는 지표변수(indicator)의 개수를 의미. VM은 Fleishman(1978; Vale & Maurelli, 1983) 방법, IG는 independent 

generator(IG) 변환법(Foldnes & Olsson, 2016)을 의미. 비정규성 수준이 범위로 작성된 경우 관찰된 표본 첨도를 의미. BS = 부트스트랩; 

B = 베이지안.

표 1. 분석에 이용된 시뮬레이션 설계 요약
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한정하여 제시되었다. 

결과의 분류 기준

다양한 조건에서 수행된 연구 결과들은 크

게 추정 방법의 종류, 정규성 가정의 위배 정

도, 표본크기, 지표변수 개수의 네 가지 기준

으로 분류될 수 있다. 먼저, 첫 번째 조건인 

추정 방법의 종류는 앞서 소개한 수정된 최대

우도 방법(MLM, MLR), 부트스트랩(비모수 부

트스트랩, Bollen-Stine 부트스트랩) 및 디폴트 

사전분포가 지정된 베이지안을 고려하였다. 

두 번째 조건인 정규성 가정의 위배 정도는 

수용 가능한 기준에 대해서 제대로 된 합의가 

부재하지만, 일반적으로 가장 많이 사용되는 

왜도 2, 첨도 7인 조건(Curran et al., 1996)을 

기반으로 구분하였다. 이에 따라 정규분포일 

때(왜도=0, 첨도=0), 정규성 가정이 약간 위배

되었을 때(0<왜도<2, 0<첨도<7), 정규성 가

정이 중간 정도로 위배되었을 때(왜도=2, 첨

도=7)로 나누었다. 본 연구의 정리 부분에서

는 정규성 가정이 심각하게 위배된 조건은 다

루지 않았는데, 이는 이러한 상황에서 단순히 

추정 방법의 선택만으로는 해결할 수 없는 심

각한 추정 문제가 발생할 수 있기 때문이다. 

예를 들어, 비정규성이 심각한 변수가 포함된 

구조방정식 모형을 분석한 김재철, 라종민

(2018)은 분석 결과에서 분산 추정치가 음수로 

나타나는 Heywood case와 같은 문제의 발생 가

능성을 보고하였다. 이에 따라 정규성 가정의 

위배 정도는 정규성 가정의 위배가 심각한 조

건을 제외하고, 그 외의 세 가지 수준으로 구

분하였다.

세 번째 표본크기 조건은 시뮬레이션 결과들

을 바탕으로 표본크기가 작은 경우( ≦  ), 

중간인 경우(   ≦  ), 큰 경우(  )

의 세 수준으로 분류하였다. 마지막으로, 지

표변수의 개수 조건이 고려되었는데, 이는 앞

선 세 가지 기준과 달리 모형 적합도의 수행

을 살펴볼 때만 적용된다. 적합도 검정통계량

이 공분산 행렬의 크기에 의존하므로, 모형 

적합도 결과의 평가에서 지표변수 개수 조건

은 반드시 고려되어야 한다(Moshagen, 2012). 

이에 따라 선행 연구를 바탕으로 지표변수 

개수가 적은 경우(15개 미만)와 많은 경우(15

개 이상)의 두 수준으로 구분되었다.

자료 분석의 준거

선행 연구들의 결론이 일관되지 않은 이유 

중 하나는 각 연구에서 시뮬레이션 조건뿐만 

아니라 평가 기준이 다르게 설정되었다는 점

에 있다(Bandalos & Leite, 2013). 따라서 서로 

다른 연구의 결과를 비교하기 위해 기존 결과

의 서술 방식을 그대로 따르기보다는 비교 가

능한 공통 지표를 설정하였다. 크게 모형 적

합도와 모수 유의성, 두 가지 측면의 지표를 

통해 각 추정 방법이 비정규성으로 인한 문제

에 적절히 대응할 수 있는지 확인하였다.

먼저, 모형 적합도 측면에서 수행도는 시뮬

레이션 기반의 연구들에서 공통적으로 보고되

는 1종오류 발생률을 통해 판단되며, 이때 빈

도주의와 베이지안은 평가 방식에서 차이를 

보인다. 빈도주의 접근의 경우, 일반적으로 추

정 방법의 모형 기각률을 바탕으로 1종오류 

발생률을 확인한다. 1종오류는 모형이 자료와 

적합함에도 불구하고 영가설을 기각해버리는 

잘못된 의사결정을 내릴 확률을 의미하며, 일

반적으로 Bradley(1978)가 제시한 유의수준 0.05

에서의 준거(0.025~0.075)가 평가 기준으로 이
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용되고 있다.4) 경험적 1종오류 발생률이 이 

구간에 속하는 경우, 1종오류가 통제되었다고 

간주될 수 있다. 한편, 베이지안 접근의 경우

에는 빈도주의 접근과 유사하게 모형 적합도

를 판단하지만, 값 대신 값을 사용한다

는 차이가 있다. 값과 달리 균일한 분포를 

따르지 않는 값에 대해서는 통계적 판단

이 가능한 이론적 기준값(cut-off)이 정해져 있

지 않다(Cain & Zhang, 2018; Hjort et al., 2006). 

그럼에도 불구하고 기준값으로 0.05나 0.10을 

이용하는 것은 합리적이라고 제안되었고, 이

를 바탕으로 값이 0.05 이하일 때 해당 모

형이 자료와 적합하지 않다고 결론을 내릴 수 

있다(Asparouhov & Muthén, 2010). 또한, 적합도

를 보다 종합적으로 판단하기 위해 검정력을 

함께 확인하는 경우도 있다(Curran et al., 1996; 

Liang & Yang, 2016; Nevitt & Hancock, 2001, 

2004; Xu, 2019; Yu, 2002). 일반적으로 검정력

은 1종오류의 통제 여부를 확인한 이후에 논

의되는데, 이는 1종오류가 적절히 통제된 조

건에서 신뢰할 수 있는 검정력 결과가 도출되

기 때문이다(Yang et al., 2017).5) 검정력은 자

4) 비정규성 조건에서 실제 1종오류 발생률이 유

의수준보다 높거나 낮을 가능성이 있으므로, 

단순히 하나의 1종오류 발생률이 아닌 적정 범

위 기준의 사용이 권장된다(Ferraz et al., 2022; 

Maydeu-Olivares, 2017; Nevitt & Hancock, 2001, 

2004). 

5) Bradley(1978)의 준거에 따르면, 경험적 1종오류 

발생률이 7.5%를 초과한 경우 해당 검정통계량

을 이용한 검정력은 신뢰할 수 없으며, 이러한 

조건에서는 1종오류가 적절히 통제된 다른 검정

통계량과의 비교가 적절하지 않게 된다. 반면, 모

형 기각률이 2.5% 미만일 때는 검정통계량이 여

전히 허용 가능한 검정력을 제공할 가능성이 있

기에 후속 검정력 분석에 활용될 수 있다(Nevitt 

& Hancock, 2004).

료와 적합하지 않은 모형을 제대로 기각함으

로써 올바른 의사결정을 내릴 확률을 뜻하며, 

사회과학 연구에서는 최소 80% 이상 확보하

는 것이 추천된다. 이때, 자료와 적합하지 않

은 모형이란 완벽적합을 가정한 참 모형(true 

model)과 달리, 연구자가 요인 구조를 잘못 설

정하거나(Liang & Yang, 2016) 0이 아닌(nonzero) 

요인부하량을 의도적으로 생략하여 직접 설정

한 모형(Curran et al., 1996; Nevitt & Hancock, 

2001, 2004; Yu, 2002), 혹은 RMSEA 등의 모형 

부적합 지표를 이용하여 부적합 정도를 특정 

값으로 설정한 모형(Xu, 2019) 등을 의미한

다.6) 

다음으로, 모수 유의성 측면에서 수행의 정

확성은 표준오차의 상대적 편향을 통해 확인

할 수 있다. 앞서 언급한 바와 같이, 최대우도 

방법은 비정규성 조건에서도 비교적 편향되지 

않은 모수를 추정할 것으로 기대되기 때문에, 

선행 연구들은 각 방법이 표준오차 추정치를 

얼마나 정확하게 산출할 수 있는지에 초점을 

두어 살펴보았다(Lai, 2019; Maydeu-Olivares, 

2017; Nevitt & Hancock, 2001; Xu, 2019). 표준

오차 추정치의 상대적 편향은 모집단 표준오

차와 추정된 표준오차 간의 차이로 평가되는

데, 이때 추정된 표준오차는 이론적 분포나 

통계모형을 따르도록 생성된 자료 세트를 

기반으로 추정된 모수 추정치에 기반한다

(Bandalos & Leite, 2013). 상대적 편향 비율이 

6) 검정력의 명확한 해석을 위해서는 효과크기 제

시가 필수적이나, 본 연구에서 검토한 5개의 연

구는 이를 수치적으로 명확히 보고하지 않아 모

형 설정 오류의 정도에 대한 구체적인 근거를 제

시할 수 없었다. 반면, Xu(2019)는 RMSEA를 통해 

모형 부적합 정도를 설정하였으며, 본 연구는 

RMSEA를 0.24로 설정한 조건에서의 검정력 결과

를 이용하였다.
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10% 미만일 경우 허용 가능한 수준으로 간주

되며(Hoogland & Boomsma, 1998), 본 연구에서

도 표준오차 추정치의 상대적 편향에 대한 평

가 지표에 일관되게 10% 기준을 적용하여 살

펴본다. 

준거에 따른 결과 비교

일정 기준에 따라 분류된 수행 결과는 자료 

분석의 준거에 따라 정리되었다. 각 조건별 

세부 결과를 정리할 때, 모든 연구에서 1종오

류, 검정력 및 표준오차 추정치의 수행도가 

일괄적으로 검토되지 않았으므로 조건마다 포

함되는 결과의 개수가 다를 수 있다. 동일한 

조건에 단일 결과만 있는 경우 해당 결과를 

그대로 제시하고, 여러 결과가 포함된 경우에

는 대표적으로 최소값과 최대값을 제시하여 

결과의 전반적인 경향을 보이고자 한다. 이후

부터 정규성 가정의 위배 정도에 따른 수행 

결과를 순차적으로 제시하고, 각 조건에서 신

뢰할 수 있는 결과를 도출하는 추정 방법에 

대해 종합적으로 논의한다. 

1종오류

각 방법의 수행도 차이를 비교한 10편의 시

뮬레이션 연구는 15개의 모형에 대해 다양한 

조건에서의 결과를 보고하였다(Curran et al., 

1996; Ferraz et al., 2022; Grønneberg & Foldnes, 

2019; Liang & Yang, 2016; Maydeu-Olivares, 

2017; Nevitt & Hancock, 2001, 2004; Savalei, 

2010; Xu, 2019; Yu, 2002). 해당 연구들의 1종

오류 발생률 결과를 세 가지 조건에 따라 분

류한 결과가 표 2에 제공된다. 이때 수정된 

최대우도 방법은 MLM과 MLR의 통합된 결과

를 의미하며, 두 방법의 결과 간 유의한 차이

가 없었기 때문에 이를 구분하지 않고 제시하

였다.7) 추정 방법에 따른 1종오류 결과를 살

펴보면, 대부분의 조건에서 부트스트랩이 가

장 낮은 1종오류 발생률을 보였으며, 수정된 

최대우도 방법과 베이지안이 그 뒤를 따랐다. 

이러한 결과는 정규성 가정 위배 정도, 지표

변수 개수, 표본크기 조건에 따라 다르게 나

타났으며, 각 조건에 따른 결과의 양상을 순

차적으로 살펴본다.

먼저, 정규성 가정이 만족된 상황(왜도=0, 

첨도=0)에서 표본크기 조건이 1종오류 발생률

에 미치는 영향은 크지 않았으나 지표변수 개

수에 따라서는 1종오류 결과의 양상이 달라지

는 것을 확인할 수 있었다. 지표변수가 적은 

경우에는 표본크기 조건에 상관없이 수정된 

최대우도 방법과 부트스트랩의 결과는 대부분 

기준을 충족하고, 베이지안의 결과는 상대적

으로 1종오류의 하한 기준보다 낮게 나타났다. 

반면, 지표변수가 많은 경우에는 수정된 최대

우도 방법과 부트스트랩 모두 기준을 충족하

지 못한 결과들이 대부분이었으며, 특히 수정

된 최대우도 방법에서 1종오류 상한 기준 이

상의 결과, 부트스트랩에서는 하한 기준 이하

의 결과가 관찰되었다. 한편, 베이지안 방법에

서는 오히려 기준에 부합하는 결과가 상대적

으로 더 많이 발견되었다. 덧붙여, 표본크기에 

따른 변화 양상은 수정된 최대우도 방법에서

만 확인할 수 있었다.

다음으로, 정규성 가정의 위배 정도가 0<왜

7) MLM과 MLR의 차이가 뚜렷하게 나타난 경우는 

결측치 조건을 포함시킨 연구(Savalei, 2010)에서

만 관찰되었다. 해당 연구에서는 비정규 데이

터와 결측치 조건(MCAR)이 동시에 존재할 때 

MLM이 전반적으로 1종오류를 적절히 통제하지 

못하였다.
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비정규성 

정도

지표변수

개수

표본

크기

추정 방법

Corrected ML BS B

min    max min max min max

왜도=0

첨도=0

15개

미만

S 0.050* 0.095 0.023 0.049 <0.025* 0.063

M 0.050 0.065 0.036 0.050 <0.025
* 0.021

L 0.067 0.080 0.043 0.059 <0.025
*

15개

이상

S 0.076 0.350 0.000 0.007 0.007

M 0.062 0.110 0.012 0.030 0.059 0.060

L 0.046 0.090 0.021 0.044 -

0<왜도<2

0<첨도<7

15개

미만

S 0.108 0.125 0.010 0.035 <0.025* 0.143

M 0.070 0.100* 0.039 0.053 0.000 0.099

L 0.050
* 0.063 0.033 0.047 <0.025*

15개

이상

S 0.130 0.940 0.000 0.014 0.123 0.186

M 0.070 0.380 0.013 0.021 0.338 0.477

L 0.056 0.190 0.018 0.041 -

왜도=2

첨도=7

15개

미만

S 0.055 0.175* 0.023 0.040 0.025* 0.272

M 0.065 0.094 0.030 0.068 <0.025* 0.255

L 0.040 0.076 0.045 0.059 <0.025
*

15개

이상

S 0.017 0.516 0.000 0.009 0.454 0.649

M 0.015 0.130 0.009 0.022 0.749 0.888

L 0.064 0.020 0.027 -

주. Bradley(1978)의 기준(2.5~7.5%)에 부합하는 시뮬레이션 결과는 굵은 글씨체로 표시. min은 해당 조건에

서의 최소값을, max는 최대값을 의미. 표본크기 조건의 경우, S는 250 이하, M은 250 초과 500 이하, L은 

500 초과인 경우를 의미. *를 표시한 경우, 시뮬레이션 결과가 그림으로 제시됨에 따라 해당 그림의 눈금

을 기반으로 대략적인 값 기재. Corrected ML = 수정된 최대우도 방법; BS = 부트스트랩; B = 베이지안.

표 2. 시뮬레이션 조건에 따른 각 추정 방법의 1종오류 비교

도<2, 0<첨도<7인 상황에서도 정규성 가정이 

만족된 상황과 유사하게 지표변수 조건에 따

른 수행 차이가 확인되었다. 지표변수가 적은 

경우에 부트스트랩은 표본크기와 관계없이 대

부분의 결과가 기준에 부합했으나, 베이지안

에서는 기준을 충족하지 못하는 결과들이 주

로 관찰되었다. 수정된 최대우도 방법에서는 

표본크기에 따라 기준을 충족하는 결과의 양

상이 달라졌는데, 중간 이상의 표본크기에서

는 1종오류가 적절히 통제되는 것으로 나타났

다. 반면, 지표변수가 많은 경우에는 모든 방

법이 1종오류를 제대로 통제하지 못하는 경향
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비정규성

정도

표본

크기

추정 방법

Corrected ML BS B

min max min max min max

왜도=0

첨도=0

S 0.520 1.000 0.305 0.785 0.936 1.000

M 1.000 1.000 1.000 

L 1.000 1.000 1.000

0<왜도<2

0<첨도<7

S 0.977 1.000

-

0.937 1.000

M 1.000 1.000

L 1.000 1.000

왜도=2

첨도=7

S 0.400 1.000 0.235 0.645 0.125* 0.999

M 0.750 1.000 0.990 0.625* 1.000

L 1.000 1.000 1.000

주. 검정력이 0.8 이상인 시뮬레이션 결과는 굵은 글씨체로 표시. min은 해당 조건에서의 최소값을, max는 

최대값을 의미. 표본크기 조건의 경우, S는 250 이하, M은 250 초과 500 이하, L은 500 초과인 경우를 의

미. *를 표시한 경우, 시뮬레이션 결과가 그림으로 제시됨에 따라 해당 그림의 눈금을 기반으로 대략적인 

값 기재. Corrected ML = 수정된 최대우도 방법; BS = 부트스트랩; B = 베이지안.

표 3. 시뮬레이션 조건에 따른 추정 방법의 검정력 비교

을 보였다. 이는 특히 수정된 최대우도 방법

에서 두드러졌으며, 표본크기가 작은 조건에

서 최소값(0.130)과 최대값(0.940) 간의 차이가 

크게 나타난 점을 예로 들 수 있다. 이때 최

소값은 지표변수가 16개일 때, 최대값은 32개

일 때의 결과로(Maydeu-Olivares, 2017), 동일한 

조건임에도 지표변수가 많아질수록 1종오류 

발생률이 높아질 수 있음을 시사한다. 이러한 

결과는 표본크기와 지표변수 조건의 결합이 

결과에 중요한 영향을 미칠 수 있다는 것을 

보여주지만, 충분한 표본크기가 확보되면 이

러한 경향은 완화되는 것으로 나타났다.

마지막으로, 정규성 가정의 위배 정도가 왜

도=2, 첨도=7인 상황에서도 지표변수 조건에 

따라 유의한 수준의 수행 차이가 나타났다. 

지표변수가 적은 경우, 부트스트랩은 표본크

기에 상관없이 우수한 결과를 보인 반면, 수

정된 최대우도 방법과 베이지안의 결과들은 

일관되지 않은 경향을 보였다. 한편, 지표변수

가 많은 경우에는 세 방법 모두 전반적으로 

낮은 수행도를 보였으며, 특히 부트스트랩의 

수행도가 크게 저하된 것을 확인할 수 있었다. 

베이지안은 조건에 따른 변동성이 가장 크고 

안정적인 수행도를 보이지 않았으나, 수정된 

최대우도 방법은 표본크기가 일정 수준 이상

인 조건에서 이러한 경향이 완화되는 것으로 

나타났다.

요약하자면, 각 방법의 1종오류 발생률은 

시뮬레이션 조건에 따라 차이를 보였다. 특히 

지표변수 조건에 따라 유의한 수준의 차이가 

나타났으며, 이러한 차이는 정규성 가정이 위

배된 상황에서 더욱 두드러졌다. 이에 따라 
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정규성 가정이 위배된 상황에서 지표변수 조

건에 따라 권장되는 방법도 달라졌는데, 지표

변수 개수가 적은 경우에는 표본크기와 상관

없이 부트스트랩의 사용이 추천되며, 지표변

수 개수가 많은 경우에는 표본크기가 충분히 

확보된 조건에서 수정된 최대우도 방법의 사

용이 바람직할 것으로 판단된다. 한편, 베이지

안은 가정의 위배 정도에 상관없이 1종오류를 

적절히 통제하지 못하는 경우가 많고, 1종오

류 발생률도 일관적이지 않은 것으로 나타났

다. 다만, 분류에 이용된 선행 시뮬레이션 연

구들이 서로 다른 프로그램을 사용했으며, 자

료 세트의 수를 다르게 설정했다는 점에서 이

러한 요인들이 결과에 영향을 미쳤을 가능성

이 있다.8) 

검정력

시뮬레이션 연구에서는 1종오류 결과를 확

인한 이후, 검정력의 측면에서 어떻게 수행되

는지를 살펴보게 된다. 1종오류를 확인한 선

행 연구 중에서 검정력까지 함께 검토한 연구

는 충분하지 않았으며, 그중 지표변수 개수를 

조건으로 설정한 연구도 거의 없었다. 이에 

지표변수 조건을 분류 기준으로 이용하지 않

고, 수행도를 확인한 일곱 개의 모형에 대한 

결과를 정규성 가정 위배 정도와 표본크기 

조건에 따라 표 3에 정리하였다(Curran et al., 

1996; Liang & Yang, 2016; Nevitt & Hancock, 

2001, 2004; Xu, 2019; Yu, 2002).

표의 내용을 살펴보면, 모든 방법이 대체로 

기준 이상의 검정력을 보이는 것으로 나타났

다. 정규성 가정이 만족된 경우, 수정된 최대

8) Liang과 Yang(2016)은 Mplus의 디폴트 사전분포를 

이용하고, Xu(2019)는 blavaan(R package)의 디폴트 

사전분포를 이용하였다.

우도 방법과 부트스트랩은 표본크기에 따라 

결과 차이를 보인 반면, 베이지안 방법은 표

본크기와 관계없이 높은 검정력을 유지하는 

경향을 보였다. 정규성 가정의 위배 정도가 

0<왜도<2, 0<첨도<7인 상황에서는 베이지안

과 수정된 최대우도 방법 모두 표본크기와 상

관없이 높은 검정력을 유지하였다. 부트스트

랩의 경우, 검정력 측면에서 가정이 약간 위

배된 상황에서의 수행을 확인한 연구가 없었

으므로, 해당 방법의 성능은 확인할 수 없었

다. 정규성 가정의 위배 정도가 왜도=2, 첨도

=7인 상황에서는 베이지안 방법과 수정된 최

대우도 방법 모두 분류 조건에 따라 상이한 

결과를 나타냈으며, 특히 베이지안을 이용한 

결과는 표본크기가 작은 조건에서 일관되지 

않은 경향을 보였다. 한편, 부트스트랩은 정규

성 가정이 만족되었을 때와 유사하게, 표본크

기가 일정 수준 이상 주어진다면 비교적 안정

적이고 충분한 검정력이 확보되는 것으로 나

타났다. 

요약하자면, 검정력 측면에서 정규성 가정

의 위배 정도와 표본크기 조건에 따라 수행 

차이가 나타났다. 정규성 가정이 위배되고 표

본크기가 일정 수준 이상일 때 베이지안과 수

정된 최대우도 방법의 검정력 결과는 안정적

으로 유지되었으며, 이러한 조건들에서 두 방

법의 사용이 권장된다. 부트스트랩 방법도 표

본크기가 충분한 경우 안정적으로 추정이 수

행되지만, 검정력은 앞선 두 방법보다 약간 

낮은 것으로 확인되었다. 따라서 동일한 조건

에서 일정 이상의 표본크기가 확보된 경우, 

수정된 최대우도 방법, 베이지안 그리고 부트

스트랩 순으로 사용이 추천된다.
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표준오차 편향

전체적인 모형 적합도를 확인한 후에는 모

수 유의성 검정에 사용되는 표준오차 추정치

의 정확성을 검토하는 단계로 이어진다. 각 

방법의 수행도를 비교하기 위해, 요인부하량 

표준오차의 상대적 편향을 이용하며, 상대적 

편향은 특정 요인부하량의 표준오차에 대해 

산출되거나(Nevitt & Hancock, 2001; Xu, 2019), 

모든 요인부하량 표준오차에 대한 평균값으

로 산출된다(Lai, 2019; Maydeu-Olivares, 2017). 

이때 기존 연구들은 표준오차의 상대적 편

향을 평가하는 데 세 가지 수식을 사용하였

다(Hoogland & Boomsma, 1998; Lai, 2019; 

Maydeu-Olivares, 2017; Nevitt & Hancock, 2001). 

각 연구에서 도출된 결과는 서로 다른 수식

으로 계산되었으므로, 결과들을 동일한 기준

에서 일괄적으로 비교하기는 어렵다. 이에 

본 연구에서는 Forero와 Maydeu-Olivares(2009)

의 방법을 변형하여 이용한다. Forero와 

Maydeu-Olivares(2009)는 여러 모수에 대해 표준

오차의 상대적 편향을 10% 미만, 10%~20% 

등으로 평가하여, 각 기준을 충족하는 비율을 

통해 추정 방법의 성능을 평가하였다. 본 연

구에서는 각 수식으로 계산된 요인부하량 표

준오차의 상대적 편향 결과가 기준(10%)에 부

합하는 비율로써 결과를 제시한다. 예를 들어, 

100%라는 결과는 해당 방법으로 산출된 표준

오차의 상대적 편향 결과가 모두 10% 미만임

을 의미한다. 이를 통해 각 방법에서 산출된 

표준오차 상대적 편향의 경향을 파악하고, 절

대적인 수치보다는 상대적인 패턴을 중점적으

로 살펴본다. 또한, 표준오차의 경우에 MLM

과 MLR 간의 수행 차이가 명확하게 나타나 

이를 구분하여 제시하였다. 표준오차 추정치

의 정확도를 확인한 네 개의 연구(Lai, 2019; 

Maydeu-Olivares, 2017; Nevitt & Hancock, 2001; 

Xu, 2019)를 정리한 결과는 그림 1과 같다.

그림 1의 (a)는 정규성 가정이 만족된 상황, 

(b)는 정규성 가정이 약간 위배된 상황, (c)는 

정규성 가정이 중간 정도로 위배된 상황에서

의 결과를 보여준다. 그림에서 보이는 바와 

같이, (a)에서는 모든 방법이 우수한 것을 확인

할 수 있었다. 한편, 정규성 가정이 위배된 상

황에서는 방법 간의 수행 차이가 나타났는데, 

먼저 (b)에서는 표본크기 조건에 따라 방법별

로 두 가지 주요 패턴이 관찰되었다. 첫 번째

는 MLM과 MLR에서 나타난 것으로 표본크기

가 증가함에 따라 수행도가 향상되는 경향이 

있었으며, 두 번째는 부트스트랩과 베이지안

에서 기준에 부합한 결과의 비율이 감소하다

가 증가하는 패턴을 확인할 수 있었다. 이러

한 두 패턴의 차이는 각 방법이 점근 이론에 

의존하는지 여부로 설명될 수 있으며, 이는 

표본크기에 따른 수행도 차이에 방법의 이론

적 특성이 중요한 영향을 미친다는 점을 시사

한다. 다음으로, (c)에서는 앞선 (b)와 다르게 

부트스트랩의 수행이 다른 방법들에 비해 우

수한 것으로 확인된 반면, 나머지 방법들은 

일관되게 저조한 수행도가 관찰되었다. 흥미

롭게도, MLM은 (b)의 결과와 달리 MLR과 유

의한 차이를 보이는 것으로 나타났다. 이는 

해당 범주에 분류된 선행 연구(Lai, 2019)가 현

실적인 상황을 반영하기 위해 시뮬레이션의 

기본조건으로 모형 부적합(misfit) 조건을 포함

했기 때문으로 추측된다.9) 그 결과, 정규성 가

9) MacCallum(2003)에 따르면, 경험적 분석 모형은 

참(true) 모형의 근사치에 불과하며, 약간의 부적

합은 종종 발생할 수 있다. 이에 따라 Lai(2019)는 

현실적인 상황을 반영하기 위해 RMSEA를 모형 

부적합의 지표로 기본조건에 포함시켜 분석을 진
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(a) 만족된 경우 (b) 약간 위배된 경우 (c) 중간 정도로 위배된 경우

그림 1. 정규성 가정 위배 정도에 따른 요인부하 추정치의 표준오차 상대적 편향 연구 결과 중 편향이 

10% 미만인 결과의 비율. 표본크기 조건의 경우, S는 250 이하, M은 250 초과 500 이하, L은 500 초과인 

경우를 의미. BS = 부트스트랩; B = 베이지안.

정의 위배와 부적합 조건이 결합된 조건에서

는 MLM의 수행이 현저히 저하되었고, MLM과 

MLR 간 유의한 차이가 발견되었다. 이는 MLR

이 MLM에 비해 비정규성과 설정 오류가 있는 

모형에도 점근적으로 강건하다는 기존 연구

(Lai, 2018)와 동일한 결과이다.

요약하자면, 표준오차의 상대적 편향 측면

에서 각 방법의 수행도는 정규성 가정 위배 

정도와 표본크기 조건에 따라 달라지는 경향

을 보였다. 정규성 가정이 위배된 상황에서 

부트스트랩은 표본크기 조건과 무관하게 상대

적으로 우수한 수행도를 보이는 것으로 나타

났다. 한편, MLM과 MLR은 정규성이 약간 위

배된 상황에서는 유사한 결과를 보였으나, 다

른 조건이 결합되었을 때에는 수행도에 차이

가 관찰되었다. 특히 모형 설정의 오류나 결

측치가 있을 때, 대체로 MLR이 더 강건한 수

행도를 보이는 경향을 확인할 수 있었다(Lai, 

2018, 2019; Savalei, 2010). 반면, 베이지안의 결

과는 표본크기와 관계없이 정규성 가정의 위

행했다. 이때 Cudeck과 Browne(1992)의 절차에 따

라 RMSEA를 0.06으로 설정하여 시뮬레이션을 수

행하였다.

배 조건에 대해 전반적으로 강건하지 않은 것

으로 나타났다. 이는 비정규성 문제에 대응하

는 데 일반적인 최대우도 방법보다 나은 성능

을 보일 수 있지만, 대안적인 방법으로 제안

된 수정된 최대우도 방법 및 부트스트랩과 비

교할 때는 덜 효과적일 수 있음을 시사한다.

제안 및 논의

심리학을 비롯한 사회과학 분야에서 사용되

는 자료는 정규성 가정을 만족하지 않는 경우

가 많아, 이를 보완하기 위한 다양한 추정 방

법이 제안되어 왔다. 그러나 이러한 방법의 

수행도는 연구마다 조건이 다르게 설정됨에 

따라 산발적으로 논의되고 있으며, 이에 따라 

각 방법의 구체적인 수행도에 대해서는 아직

까지 명확한 합의에 이르지 못한 상황이다. 

따라서 본 연구는 정규성 가정이 위배되었을 

때 대안적으로 사용할 수 있는 방법들을 소개

하고 어떤 원리로 대응되는지 설명함과 동시

에, 기존의 수행도 연구 결과를 종합적으로 

정리하여 추정 방법을 선택하는 데 연구자가 
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그림 2. 정규성 가정 위배 정도, 표본크기, 지표변수 개수에 따른 선택적 가이드라인. 1종오류가 통제되는 

방법은 굵은 글씨체로, 검정력이 확보된 방법은 기울임체로, 표준오차 편향 측면에서 추천되는 방법은 밑줄

로 표시하여 구분. BS = 부트스트랩; B = 베이지안.

실질적으로 참고할 수 있는 가이드라인을 제

안하는 것을 목적으로 하였다. 

연구자들에게 실질적인 도움을 주고자 하는 

본 연구의 목적을 위해 그림 2에는 대안적인 

방법의 사용을 고려할 때 참고할 수 있는 가

이드라인을 간략하게 나타낸 차트가 제공되어 

있다. 굵은 글씨체는 1종오류 측면에서, 기울

임체는 검정력 측면에서, 밑줄은 표준오차 편

향의 측면에서 추천되는 방법을 나타낸다. 그

림에 따라 왜도와 첨도의 절대값 크기로 자료

의 정규성 가정의 만족 여부를 확인한 이후, 

위배된 경우에는 그 정도에 따라 추정 방법의 

선택에 대한 도움을 얻을 수 있다. 먼저, 정규

성 가정이 만족된 경우, 대부분의 방법이 비

교적 우수한 성능을 보여 어떤 방법을 사용하

더라도 큰 차이는 없을 것으로 보인다. 최대

우도 방법에 기반하는 MLM과 MLR의 경우에

도 최대우도 방법과 다른 수식을 이용하지만, 

수행도에 있어 통계적으로 유의한 차이는 보

고되지 않았다(Maydeu-Olivares, 2017). 다만, 결

측치 등 다른 조건이 결합되어 있을 경우, 정

보행렬의 차이로 인해 이들 방법 간 수행도가 

달라지는 것으로 확인되었다(Savalei, 2010). 안

정적인 추정을 위해 최대우도 방법과 부트스

트랩은 일정 이상의 표본크기가 요구된다는 

점(Nevitt & Hancock, 2001)을 고려할 때, 표본

크기가 작은 경우라면 베이지안(Lee & Song, 

2004)이 보다 적합한 선택이 될 수 있다.

다음으로, 정규성 가정이 약간 위배된 조건

에서는 부트스트랩과 수정된 최대우도 방법의 

사용이 권장된다. 구체적으로, 모형 적합도의 

수행 측면에서 지표변수의 개수가 적을 때는 

부트스트랩이 추천되고, 지표변수의 개수가 

많을 때 일정 이상의 표본크기만 주어진다면 

수정된 최대우도 방법의 사용도 적절할 것으

로 기대된다. 반면, 베이지안은 일관적으로 낮

은 수행을 보였다는 점에서 사용이 지양된다. 

표준오차의 편향 측면에서는 상대적으로 모든 
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방법의 수행이 양호하게 나타났으나, 전반적

인 조건에서 양호한 수행을 보인 수정된 최대

우도 방법의 사용이 권장된다. 즉, 두 기준을 

모두 고려했을 때, 가장 추천될 수 있는 추정 

방법은 모형이 작을 때는 부트스트랩, 모형이 

클 때는 수정된 최대우도 방법이다.

마지막으로, 정규성 가정이 중간 정도로 위

배된 조건에서도 부트스트랩과 수정된 최대우

도 방법이 추천된다. 모형 적합도의 측면에서, 

지표변수의 개수가 적을 때는 부트스트랩이, 

많은 경우에는 충분한 표본크기의 확보를 전

제로 수정된 최대우도 방법의 사용이 적절할 

것으로 기대된다. 반면, 베이지안은 여전히 일

관되지 않으면서도 기준을 벗어나는 결과들이 

대부분이었다는 점에서 추천되지 않는다. 표

준오차의 편향 측면에서 전반적으로 우수한 

수행을 보인 MLR이 가장 적절하였으며, 모든 

조건에서 베이지안이 가장 양호하지 않은 결

과를 보였다. 이에 따라 추천될 수 있는 방법

은 부트스트랩과 MLR이다. 정규성 가정이 

심각하게 위배된 조건에서도 여러 방법의 

수행도를 탐색하는 연구들이 진행되어 왔으

나(Curran et al, 1996; Nevitt & Hancock, 2001, 

2004; Yu, 2002), 이를 실제 자료에 적용했을 

때는 심각한 추정 문제의 발생 가능성이 보고

되기도 하였다(김재철, 라종민, 2018). 이러한 

점을 고려할 때, 해당 조건에서는 비정규성으

로 인한 왜곡을 보정하는 접근을 넘어선 새

로운 모형의 사용이 검토된다. 이에 비정규성 

자체를 모형화하는 skew-SEM(Asparouhov & 

Muthén, 2016)이 고려될 수 있으며, 이는 평균

과 공분산으로 자료를 모형화하는 기존 구조

방정식 모형을 확장한 접근법이다. 비대칭 

분포 등을 통해 왜도와 첨도까지 모수로 설정

함으로써 분포 형태 자체를 모형화한다는 특

징을 가진다(Yuan & Gomer, 2021).

결론적으로 비정규성이 가정된 시뮬레이션 

연구 결과를 종합했을 때, 부트스트랩이 가장 

적합한 방법으로 간주되며, 베이지안 방법은 

권장되지 않는다. 한편, 특정 조건에서는 수정

된 최대우도 방법의 사용이 추천되는데, 특히 

표본크기와 지표변수의 개수가 일정 수준 이

상인 경우가 이에 해당된다. 이러한 조건에서

는 MLR이 다른 방법들보다 우수한 수행을 보

였으므로, MLR이 더 적합한 선택이 될 수 있

다. 다만, 이는 대략적인 기준에 기반한 분류

의 결과로, 모든 연구 상황에 적용될 수 있는 

것은 아니라는 점에 유의해야 한다. 또한, 본 

연구의 논의는 다수의 선행 연구에서 공통적

으로 설정한 조건들을 중심으로 전개되었으며, 

본 논의의 범위에 포함되지 않는 조건들에서

의 수행도는 다른 연구들을 통해 확인할 수 

있다. 결측치 조건의 경우, Savalei(2010)는 완전

한 데이터에서는 방법들 간 수행도에 점근적

으로 유의한 차이가 없으나, 결측치가 있는 

경우 MLR의 수행도가 우수함을 보였다. 또한, 

모형의 부적합 정도를 살펴본 연구(Lai, 2019)

는 부적합 정도와 비정규성 정도가 모두 심각

한 조건에서 부트스트랩이 MLM과 MLR보다 

나은 성능을 나타낸다고 보고하였다. 이러한 

점들을 고려하여 연구자는 앞선 이론적인 고

찰을 바탕으로 추정 방법 간의 결과를 비교함

으로써 각 방법의 장점과 한계점을 종합적으

로 검토하여 상황에 맞는 적절한 방법을 결정

할 수 있을 것이다.

본 연구는 대안적인 추정 방법을 이용한 여

러 결과들을 통합하여 비교하는 과정에서 몇 

가지 제한점을 가지고 있다. 먼저, 비교에 이

용된 추정 방법의 종류가 한정적이다. 본 연

구에서는 세 개의 접근법을 대표하기 위한 추
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정 방법으로 MLM, MLR과 비모수 부트스트랩 

및 Bollen-Stine 부트스트랩, 그리고 디폴트 사

전분포 설정을 적용한 베이지안을 이용하였다. 

그러나 MLMV나 편향 조정 부트스트랩 등 더 

다양한 강건한 추정 방법이 존재하며, 이들 

간의 수행 차이가 존재한다는 것이 선행 연구

에서 보고된 바 있다(Falk, 2018; Ferraz et al., 

2022). 또한, 베이지안은 사전분포로 정보 사

전분포를 지정할 경우 프로그램의 디폴트 분

포를 이용하는 것보다 더욱 정확하고 안정적

인 추정 결과를 제공하는 것으로 알려져 있다. 

김재철, 라종민(2018)은 정규성 가정이 심각하

게 위배된 경우, MLMV 등과 같은 빈도주의 

접근보다 적절한 사전분포를 지정한 베이지안 

접근이 추정 문제를 해결하는 데 더 효과적일 

수 있음을 보고하였다. 이러한 결과에 비추어 

볼 때, 베이지안의 결과가 가장 좋지 않았던 

본 연구에서의 결론과는 다른 결과가 확인될 

가능성이 있다. 다음으로, 본 연구가 제안한 

방향성이 보편적인 원리를 반영하고 있는 것

은 아니라는 점에 있다. 본 연구는 다양한 연

구 상황에서의 결과를 분류하기 위해 다수의 

선행 연구에서 공통적으로 이용한 요인들을 

바탕으로 기준을 설정하여, 이를 비교에 이용

하였다. 그러나 경험적인 기준을 적용하는 과

정에서, 일부 연구의 결과는 분류 기준에 완

전히 부합하지 않아 유사한 범주로 분류되었

으며, 특정 연구에서 개별적으로 설정한 결측

치 비율 등과 같은 조건들을 충분히 반영하지 

않았다는 점이 한계로 작용할 수 있다. 하지

만 모든 연구에서 발생할 수 있는 조건을 고

려해 하나의 기준으로 통합하여 비교하는 것

은 현실적으로 가능하지 않으며, 본 연구의 

주된 목적은 여러 시뮬레이션 결과들이 공통

적인 조건에서 보이는 전반적인 수행 경향을 

제시하는 데 있었다. 이에 추정 방법의 적절

성에 대한 보다 다양하고 현실적인 조건에서

의 평가는 추후 후속 연구와 경험적 증거를 

통해 이루어질 것으로 기대한다.

이러한 제한점에도 불구하고 본 연구는 국

내에서 아직까지 심도 있게 다뤄지지 않은 정

규성 가정 위배의 문제와 이에 대안적으로 사

용될 수 있는 방법들을 소개하고, 이들 방법

에 대한 종합적인 논의를 시도하였다는 점에

서 의의가 있다. 또한, 선행 연구에서 실시된 

시뮬레이션 결과들을 종합적으로 정리함으로

써 각 방법들의 수행 결과를 체계적으로 비교

하였다. 단순히 비교하는 것에 그치지 않고, 

해당 방법들의 적절성을 논의하여 간략한 가

이드라인을 제공하였다는 장점이 있다. 이에 

따라 본 연구 내용을 토대로 연구자들이 정규

성 가정의 위배 상황에서 대안적인 추정 방법

들에 대한 이해와 각 방법의 장점과 한계점을 

종합적으로 고려하여 적합한 방법을 결정할 

수 있을 것으로 기대한다.
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Exploring alternatives to ML when normality assumptions are

violated in structural equation modeling
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Maximum likelihood (ML), which is commonly used to estimate structural equation models, is based on 

the assumption of normality in the data. However, violations of the normality assumption are frequently 

reported in psychology and the social sciences, which can lead to biased estimation results and undermine 

the validity of statistical inferences. Although alternative methods that can provide reliable results under 

non-normal conditions have been explored, the performance of these methods has shown inconsistent 

patterns across studies, making it difficult to establish clear criteria for selecting appropriate methods. This 

study aims to address the problems posed by violations of the normality assumption and to explore 

alternative methods for dealing effectively with such violations. By integrating studies from the last 30 

years of research, the study attempts to provide practical guidelines for researchers confronted with 

non-normality in their data. It first discusses the importance of the normality assumption in ML and 

examines the impact of its violation on estimation results. It then presents several alternative methods that 

are applicable under non-normal conditions and analyses the principles by which these methods deal with 

non-normality. Furthermore, previously published studies are systematically reviewed and categorized 

according to specific conditions, with the results visualized through tables and figures to compare the 

performance of different methods. Finally, the study integrates these discussions to propose guidelines for 

researchers and highlight their implications and limitations.
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